11 research outputs found

    UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex

    Get PDF
    SummaryThe xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC

    The Role of Ferrous Ion in the Effect of the Gadolinium-Based Contrast Agents (GBCA) on the Purkinje Cells Arborization: An In Vitro Study

    No full text
    Gadolinium deposition in the brain has been observed in areas rich in iron, such as the dentate nucleus of the cerebellum. We investigated the role of Fe2+ in the effect of gadolinium-based contrast agents (GBCA) on thyroid hormone-mediated Purkinje cell dendritogenesis in a cerebellar primary culture. The study comprises the control group, Fe2+ group, GBCA groups (gadopentetate group or gadobutrol group), and GBCA+Fe2+ groups. Immunocytochemistry was performed with an anti-calbindin-28K (anti-CaBP28k) antibody, and the nucleus was stained with 4′,6-diamidino-2-phenylindole (DAPI). The number of Purkinje cells and their arborization were evaluated with an analysis of variance with a post-hoc test. The number of Purkinje cells was similar to the control groups among all treated groups. There were no significant differences in dendrite arborization between the Fe2+ group and the control groups. The dendrite arborization was augmented in the gadopentetate and the gadobutrol groups when compared to the control group (p < 0.01, respectively). Fe2+ significantly increased the effect of gadopentetate on dendrite arborization (p < 0.01) but did not increase the effect of gadobutrol. These findings suggested that the chelate thermodynamic stability and Fe2+ may play important roles in attenuating the effect of GBCAs on the thyroid hormone-mediated dendritogenesis of Purkinje cells in in vitro settings

    Fatal case of Capnocytophaga sepsis from a dog bite in a patient with splenic hypoplasia

    No full text
    Abstract Background Capnocytophaga canimorsus is an oral commensal bacteria in dogs and may cause severe infection following a dog bite. This is a case of fatal C. canimorsus sepsis with acute infectious purpura fulminans (AIPF) in a healthy patient with splenic hypoplasia. Case Presentation A healthy 49‐year‐old man was admitted to the intensive care unit (ICU) for septic shock and AIPF 4 days after a dog bite to his mouth. Computed tomography revealed a small spleen measuring 53 cm3 but no other source of infection. Despite intensive care, the patient died of multiple organ failure and progressive shock on the fifth ICU day. Polymerase chain reaction of blood samples identified the C. canimorsus gene on a later day. Conclusion Capnocytophaga canimorsus from dog bites may cause fatal AIPF. Splenic hypoplasia and bite wounds in well‐perfused areas such as the oral cavity are possible risk factors for sepsis. All dog bites should warrant medical attention

    Phase Ib study of durvalumab (MEDI4736) in combination with carbon-ion radiotherapy and weekly cisplatin for patients with locally advanced cervical cancer (DECISION study): study protocol for a prospective open-label single-arm study

    No full text
    Concurrent chemoradiotherapy is considered the standard treatment strategy for locally advanced cervical cancer. Most recent reports indicate that patients with bulky tumours or adenocarcinoma subtypes have poorer local control. Carbon-ion radiotherapy (CIRT) with the concurrent use of chemotherapy has shown promising results in such cases of difficult-to-treat uterine cervical cancer. Programmed death-ligand 1 (PD-L1) upregulation was observed in tumour tissue samples from patients who had undergone CIRT. Thus, a combination of CIRT and anti-PD-L1 antibody may suppress metastasis by activating antitumour immune response, in addition to exhibiting strong local effects
    corecore